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Abstract

The input impedance of a cylindrical dipole in a hamogeneous aniso-
tropic ionosphere is determined for arbitrary values of the medium para-
meters and arbitrary orientation of the dipole with respect to the earth's
magnetic field. A sinusoidsl current distribution is assumed, as well as a
low value of dipcle excitation, so that the field equations may be assumed
to be linear. The solution is obtained in the form of & rapidly converging

integral which can be evaluated numerically without difficulty.
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1. Introduction

For several years, ionosphere probing by rocket-borne probes hes used
the technique of the antenna impedance probe. This technique was first de-
veloped by NASA scientists [1]¥ and is now being pursued by other groups. It
has been used principally in the lower regions of the ionosphere because of
limitations imposed by the rocket. wWith the availability of more powerful
rockets, it is now possible to carry probes of this type to altitudes above the
maximum fonization levels of the ionosphere.

The impedance probe has the spescial merit that it is affected by the ion-
ospheric parameters in the irmediate vicinity of the probe -~ roughly in the
order of a wavelength or leas of the probe excitation. Comsequently, this typs
of probe gives local values of the parameters, rather than integrated values as
in the Seddon [2] type of experiment. It also can be operated at an excitation
level low enough to avoid the creation of zdditional ionization in the medium
by the r-f fieid,

The proper interpretation of the impedance measurement of an antenna
probe requires a lmowledge of the input impedance as a function of the medium
properties. The type of antenna used in rocket probing can be rather closely
approximated as a cylindrical dipole. Fortunately one is interested in the
impedance change produced by the ionized medium, so that deviations from the
ideal cylindrical form can be expected to play a secondary role. For this
reason, the subject of this report is fhe calculation of the input impedance of
a cylindrical dipole in a magneto~ionic medium.

Rocket experiments have showvn that the antemna acquires a negative charge.

This negative charge repels the electrons irmediately around the antenna, with

*Numbers in brackets refer to the corresponding references in the Bibliography
on p, 170



the result that the antenna enviromeent is rendered inhomogemeous. This effect
is a very importent one from the standpoint of the application of the impedance
probe technique to the lonosphere. If this type of probe is to be useful, the
nature of the inhomogeneity produced, and its effect on the antemna impedance
must be cepable of determination. The former of these two problems appears to
be the more formidable one at present. In any event, a solution for the homo~
geneous case is a necessary first step, both to develop an insight to the rature
and magnitude of the effects produced by varicus values of the medium perameters,
as well as to serve as a basis for a pcssible perturbation technique for the
inhomogeneous distribution. The case of a homogeneous madium will be assumed
in this report.

The calculation of input impedarce of a cylindrical dipole has been the
subject of very extemsive investigation for over 60 years. It has never bean
solved with complete rigor. But this is not meant to imply that the approximate
results obtalned are not useful. Discrepancies between calculated and measured
valuas are large only when the dipole length approaches a wsvelength or more.
For most practical cases, and probably for all well-designed lonosphere probe
experiments, the agreement with messurement is quite good, being better for the
resistance component than the reactance component. The reactance component
usually corresponds to that of a dipole whose length is slightly greater than
the acturl length. This may be viewed as an end effect equivelent to small ca-
pacitances at the enda of the dipcle.

The calculation of input impedarce of a dipole is a straightforward problem

when the distribution of current over the dipole is known. The current distri-

bution is not arbitrary, however, since, in principle, it can be derived from
Maexvwell's equations and the known boundary conditions at the dipole surface.




The key difficulty arises when one att:mpts to determine this current distri-
bution from Mexwell's equations, since one is confronted with the problem of
solving an integral equation. Various iterative methods heve been employed,
but the accuracy of the result, as judged by comparison with experiment, is
sensitive to the technique used.

In first epproximation the current distribution along the dipole is sinu-
soidal. This approximation is quite gcod for very thin, long dipoles. The sin-
usolidal distribution may be considered to be the result of guided waves propa-
gating in the medium along the outside of the conductor and perfectly reflected
at the open ends, the interference between the two oppositely directed wave
trains resulting in a standing wave with zero current at the outer emds. Propa-
gation along the wires takes place at the valocity appropriate to the extarnal
nedivm,

Fortunately, as already mentioned, in the case of a dipole used as an
impedance probe we are not interested in the exact calculation of the dipole im-
pedance, but rather in the impedance change upon entry into the ionosphere.

This change is thus a difference quantity, so that emall deviations in the nature
of end effects which are occasioned by the use of only an spproximeste current
distribution can be expected to largely cancel out whem the difference, or change,
from the free-space value is formed. Consequently cne may simplify the problem
imrensely by assuming a sinusoidal current distribution. This will be done in
the present treatment.

A further assumption is made thst the amplitude of the motion of the free
electrons in the medium in response to the electric field of the dipole is so
small that the refractive index is givem by the standard Appleton-Hartree formula.

This assumption makes the field equaticns linear, so that Fourier resoclutiocns




are admissable.

Because of the complicated dependence of the refractive index of a
magneto-~-ionic medium on the direction of propagation relative to the earth's
magnetic field, it is custamery in ionospheric propagation problems to make use
of various approximastions for the refractive index [3], depending on the direc~
tions of principal interest. In the antenna impedance problem, however, all
directions of propagation are involved, so that the introduction of such simpli-
fications is dangerous., Furthermore, in comnection witk ionosphere probing,
virtually the whole gamut of normelized ionosphere parameters is of interest.
For these reasons we have avoided the introduction of any such simplifications,
in order to make the results obtained as widely applicable as possible.

In the treatment given in this report, therefore, we shall assume that
the qn‘;rent is distributed sinusoidally aloag the dipole. The input impedance
will be obtained by equating the complex pcwer passing from the surface of the
dipole into the medium to the complex power supplied to the dipole at its input
terminals. The result will be reduced to an integral along a certain contowr
in the cbuplex wave-direction plane. This integral can be evaluated numerically
for the perticuler ionosphere parsmeters (plasma frequency, gyro frequency,
collision frequency) of interest. The values of these parameters are not re-
stricted in any way in the treatment. The orientation of the dipole with re-
spect to the earth's magnetic field is arbitrary.

2. B tion of th
In view of the preceding discussion, we now undertake the calculation

of the input impedance of a cylindrical dipole in an infinite homogeneous ion-
osphere having a constant superimposed magnetic fleld. The dipole, of radius r,

and length 24, is considered to be fod at its center, and the current distribution
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will be taken to be symmetrical, and to be sinusoidal zlong each half of the
dipole, being zero at the ends. This distribution is shown in Fig. 1.

We shall find it convenient to employ two coordinate systems, = and Z°'.
Coordinate system Z has its z-axis along the earth's magnetic field, H,. Fer Zf,
the z'-axis coincides with that of the dipols, and makes an angle 6€ xn/2 with z.
The relative orientations of Z and Z' 1s chosen so that the z'-axis lies in the
yz-plane. Thus the x-axis of Z and the x'-axis of I' coincide. The orientations
of the two sels of axes are shown in Fig. 2.
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We shall assume a time dependence of el for all field quantities and
sources. Rationalized m-k-s units will be used throughout.

The impedance will be dstermined by equating the complex power (i.e.,
voli~amperes) supplied to the antenna at its feed point to the complex power
supplied by the dipols to the external medium. The latter is obtained by inte-
grating the normal component,of the complex Poynting vector over the surface of
the dipcle. For this we need to know the tangential electric and magnetic field
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strengths, E and H, at the surface of the dipole due to the curremnt in the
dipole. Since the tangential component of H can be related to the dipole cur-
rent, the only problem is to find E.
The complex power supplied to ths medium is

P=} {(gxu‘)ué, (1a)
where S is the outer surface of the sipole and the direction of d§ is the out-
ward normal. The complex power supplied to the dipole is

P=fvI*= {142, (1)
vhere V and I are the input voltage and current, respectively, and Z is the input
impedance. Consequently, on equating the two expressions for P we obtain

zs_ll'?f-,fdpsl—lg‘-f :ggxg*).dg, (2)

For the calculatiom of the integral in (2), we introduce cylindrical co-
ordinates (r',p',z') in 2!, vwhere o' is measured from the x'-axis. If we denote
unit vectors by &, then

ds = dAS,.,

The actual current flows on the surface r' = rs. However, for the calcu~
lation of the fields we make the usual assumption that the current is a line
source on the axis of the cylinder, r! = O, and directed along the axis. Thus,
if j(2') represents this line current, then the actual surface demsity is

1} ¥ - J'(Z') 2
5(3’)'—' Zm'.‘l(z) = 2xr, €z

But the tangential component of H at the surface is equal to the surface current

density, so that , A
g(z’)xew- 3z) A
2nr, 2fve X

% Ep

Hieng 2, ¢'z)=

(3)

N
Znr

On inserting (3) into the integrand of (2), we obtain
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(ExU") & = 5= I*a) (5% 84

= gz inE) Eo(SpxEr)

== zq'”_ J*@) E(n,@.z')-&, . (4)
But
€z = &2 086 + &, 5in,
80 that

E-8;- = Ezcos8 + Bysind.
Hence the outward component of the complex Poynting vector is
- Yo 16 = o9 E)
dg = *(gxﬂ ) d.§ 4,.“,',0
since dA = ryodep'dz’. This has been expressed in the T frames, anticipating that

(Ezcosd+ By sind) de'dz), (5)

the evaluation of the electric field will be simpler in this system than in Z!.
It should be noted that (5) does not involve E,. This is due to the fact that ths
assumed axial current j(z') has no component in the x-direction:
J@) = jacosb + jysinb, (6)
The problem thus reduces to a determination of the electric field E. Once
this has been found, the values of E; and Ez can be inserted in (5), and this

then substituted in (2) to find the input impedance 2.

3. Calculation of E

We now turn to the problem of finding the electric field E. This obeys
Maxwell's equations for the medium. In view of the fres electrons and the super-
imposed static magnetic field of the earth, the medium is characterized by a
dielectric tensor. This means that a given component of field is due to current
components in all three coordinate directions. On the assumption that the field
equations are linear (implying sufficiently small vibrations of the free charges),

Maxwell's equations guarantee that a solution must exist for E(x) of the form
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E: () =f6;j(§(5.)%(5.)d3x,. (7)
[At this point, a discuseion of the notatfon to be employed is in order. x denotes
an arbitrary field point with coordinates XysXysXgy X1 8 source point with co-
ordinates x,x,X,ysXzs and ....<i3x1 is a compact notation for ...dx,_xdx,_ydx‘.Lz
The convention of summing over repeated indices will be used, so that, for
example,

b =)Z:-}a;b; = a,b, +azb; + azbs.

The repeated index thus is a dummy index, and free use will be made of charging
the index letter where this is desirable.]

In (7), G435(x|x,) s the (4,]) component of the Green's temsor. Fhysically,
it represents the electric field in the 1*® direction at x due to the j'P component
of the source current density J at x;. Thus G, 3 (x|x,) propagates the effect of J
at x, to the point x. Its existence is guaranteed by (actually, is a consequence
of) the linearity of Maxwell's equations in B, H, J.

Since the derivation of the expression for Gy (x]x4) is somewhat lengthy,
it 18 given in Appendix A. The result is

N oo ADeke ) Ojild) ~iq-g
Gy sl gd= - 5§47 NT)) ’ @)
from which (7) becomes
' =_.¢w;¢¢ko. s AL q) -iq-p
E;(x) [, [dog =L A Jixne A5, (9)

In (8) and (9), p is a numerical distance wbich is defined by
g = kalt-x, (10)
ks being the wave number which will asppear in the current distribution.

Since {5) does not involve E,, and (7) does not involve j,, we need only
four of the nine matrix elements of Gij(.x-‘ﬁ) for the present problem. These are
Goos G23, G32, G33. From (7) and Jz = Jzrcos 6, Jy = Jp'sin@ ve obtain

Ez =f(8s2]q + Og3is)dxi = fdz.J(z,) [Gaz(x1x") sind + Gga (x']x" Jeos6]. (11a)
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2
Ey = [(Gaaja + Geajs) 4%, = [dar 1(2,") [Gea(X]X) 5in6 + Gga (] ") co56]. (11b)
-2

4. Evaluation of 2
Having obtained the necessary expression for the electric field E, we

can now proceed to the evaluation of the input impedance, Z. Imserting (1la) and

(11b) into (5), we obtain .
(=) . . y "
dp = -J;-(: dz’d?'f dz,'j (@) {3in*6 Gaa (x]5) + cos*6 Gy (x']x1)

-4

+5in8 cosB [Gn (X]|X7) + Goe (5’]57)]}.

Hence, introducing this into (2), we obtain
2 2=

| . s .
Z=- m:!dz'bfd,l‘]#(z') dz,'3(z") {sm’e Gaa(x'} 5{') + c0s%6 Gag (g‘]g.’?
+ sinSmse[Qu(gﬂgs_.") + Ggg Q‘:"&:’)]}v
Again we introduce dimensionless variables by putting

(12)

ket 5 5, (13)
kad=A.
Then (12) becomes
I A 2 A )
Z="Zq I —'/{\ dE'JdQ'j*(f)_{dg.”\](';."){sin‘eC-:.,+ C08"6 Giyg + $in6 038 (Geg+Gu)}. (14)
Formally, the final step is to substitute the required values of
Gu(x'!x") from (8) into (14) and perform the integratiocns to bbtein the value
for Z. The necessary combination of the Gij involves the ratio N(q)/A( g), vhere
N(q) = sin?6Azz + 05?0 Ass + 5inbcos6 (AzatAsz),
or from M(q) as given in (A-2l) of Appendix 4,
N(g)= sin*8 [(qot)(d2-co)+ qF (da-a] + cos*6 (s~} (q*- ) — i3] (25)
+ 2518 cosb 4293 (4"—“;),

vhere
4*=d’+4i +da,
and @,505,0, 8Te elements of the tensor k which are expressed in terms of plasma

frequency, gyro frequency, and collision frsquency in (A-24a,b,c,) respectively.



Also, from (A~26) of Appendix A

D) = a3 (q -~ gy~ o) (16)
Consequently, using (8) and (16) in (14), we obtain

~ i;r: kc { N(i 'A A 2? ’ f-i.i 17V

z‘ (Z‘W) 11.1 Y&a “4:., “d’l ":)Qq;"r‘)(‘?§ u,;)stJaS' lOQ “‘(9).](5 )e (]' 7"’

Ncte that (17} is of the proper dimessions, since {3*]) represents {current}®
e
Ho

and /j~

T is the free-space impedance.

We now are ready <~ lntroduce the assumption of a sinuscidel cwrran® dis-

trivution. We express this dietribution, which 1s illustrated in Fig. 1, inu the

Torm
ey = L sin(A-w), QsgsA=k,
. (13)
= Eug 5”‘{:’\?*’;\:’:1 OZ ,;Z"/\

and use tals form for both j°{e]) and 3{x,") 4n (17). It is them possibie to

carry out all the inner integra‘t‘ons in (17), which we derote by
f“ f\

£, = r‘s iéf. (dy.; ) jer) e L (19)

The quantity ¢ is ihe numer,kcal distance between the current element wi Lhe axds

",

at 2" ani the current element on *hs sirface of the cylinder st &*. Hence

-

4p= 4S8 1 gRorg s ¢ Reos
where
Reir,. (207

Then the axpoment in {19) becomes

By putiing

the innermost integrel in {19} vscomsu, in visw of the Zx-periodicity of ths
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z“e.m(q,‘.cosq‘... 4y ¥ 4or = pnd, (RVGETAE). (21)
We may convert the q's from the Z° to the £ system by using
&y = éycosb — €,35in8.
The Bessel function in (21) then becomes
J;(R s/i;‘ +{dqecos8 — dysind)* ).

The evaluation of the remaining integrals in (19) is straightforwarc. The

result for &,(q) is
&,(q) = e8|z F(q),

where

- cosA—cos{A( 8+a,5n6Y1 P
Flg) = T, (RYa’+ (g, 056 -q.asme)*)-{ tacos eq:::me?:—; 1 . (22)

Inserting this into (17) and noting from (18) that I = j(0) = I sinA (see Fig. 1),

we obtain
N{(q) F(q)
Z= Zﬁ’sm"l\ e. k“ Sjj “5(‘,?“6'2")@;’-—6;‘) thdq;dQI (23)
The factor
Po_l_c_a_ = Se
€o Ka n(ej’

where ®. is the impedance of free space and n(€) ies the refractive index of the
medium appropriate to the orientation of the cylinder axis (angle & to the
earth's magnetic field). Comsequertly the coefficlent of the triple integral in

(23) may be written as

A€,
¢ 27®n(8) sintA’ (24)
so that (23) becomes v
®- () Flg)
- ( '
Z= e e ddadds. (25)

The g-integrations will bs handled by complex variable techniques. The
g3-integration is readily effected by residues. The q4,q; integrations them
will be transformed into cylindricel coordinates. These integrals, ia general,
will have to be evaluated numerically. This appeers to be quite feasible on a
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i — p(siny sinf F.icosb),
M —pR[1-5 + (VB coso tisinysin e)‘]"‘: R[5+ :15,‘)’]'1"
i —>pR(cosd *Lsindsiny) = £ iREL,
N~ *(1-2) (siny sin@ :i& coso)’ = p’({—i—; ,!):'
Ni‘—-ﬁp‘d| [(«0587 isinpsing)~ (l'é,‘)sfn'ﬂm‘qu .
Defining
ft= l‘,;': (P‘ Nf) = oy [(c0s8 7 sinYsin@)* = (I- ) sin*G cos'y],
gt = ‘P‘;:_ ({; §) = sinysing 14’.&&56,
9= m (-!P-Ei) = sinysinfzicosd,
h = 33 (311) = R + ([ o £ siny sind)* ]y
Wt = %% (b i) = R{cos@2isiny sing) = 2iRgt,
the asymptotic forms of the integrals in (3la-c) then become

1,! ~ "4 .h (};T,ﬁ :{;:;a d?d"’o

t T4 h;
- e(;-«. ! ! (—_E})h'%frg_;- dpdv,
i <-=>m-——r)—p-z?-r cos o =)
[- 3

. x g1 ?AMP&.

U~ f (Fom) Forgr coslra= ) dedys
n @¥ilpel

(.Z_,b) _‘T‘?—ep - cos(ph} ~™/a)dpdy,

e n,

s _34iNpgl |
Ii~- 4;'1 =f f (—th) i’;—i-(-q—;\-;i-cos(Phi - */)dpd .

In each of these Integrals, the exponentiel has a negative real part.

together with the factor p"5/ 2 , insures that the integrands decay rapidly,

14

(33b)
(33¢c)
(33a)
(33e)
(331)

(34a)
(34b)
(34e)

(344)
(34e)

(35a)

(35b)

(35¢)

(354)

(35e)

(35f)

This,



so that only a restricted part of the p-interval comtributes to the value of the

integral. Comsequently (30) is in a satisfactory form for numerical evaluation-

Comparison with Free-Space Solution

A comparable form of solution may be obtained for the free-space case by

starting with the free-space Green's temsor given in (A-33) of Appendix A:

A ko 99~ et
Gij(,’.,‘l,{o) == ;:;f—j’d’ q- ’ ¢,

From this, the expression in braces in (1) is found to be

5?8 Gaa + cos*d 635 + sinbcosd (Gﬁ-,f' G3a)

T = Jaq q*"l it
where
G(q) = (43-1) sin*O + (q3-1)<05’d + 2dudss1nPosb. (36)
From this, since the s;, 9‘, €' integrals are exactly the same as before, we obtain
instead of (25)

Zo* Cof ff -G—;ﬂ,’—ffl’ dq.ddudds (37)

where
= _ka = —A—_—_ )|
Co i c 2 35‘"’/\ L] (38:

Consequently, in order thst (25) reduce to (37) in the free-space limit {x = 0)

we must show that
lim M, [V C’l‘ﬂ) (39}
220 oA3(qy - ) (d3-3)  q*-|

As x =0, we see from (A-24a-c), (A-25) and (A-29} that

=y da—*O, z3~*l, G —> 1P
so that
W3- ) = Y5 (ai- o) = g3 14pts gt- L
Also from (15) we find
NG = Nig) = (q2=1)[(052050 + ¢, 5in8)” =1 ].

Hence the left-hand side of {39) reduces to

15



N _ (dyco58 +4a51n8)°—| .
(@—i)* - 4>~ (40)

A rearrangement of {36) gives
G(g)= qisin*6+ d3cos’6+ 24adssindcosd — |
= (qa51n6 + 45¢050)* ~ [, (41)
80 that the right-hand side of (39) gives the same result as (40). This demon-
strates that the expression obtained for Z reduces properly in the free-space
casen

The expression (37) for the free-space impedance can be integrated exactly
in terms of exponential integrals, and then separated into its real and imaginary
parts to give the familiar expressions for input resistence and reactancc in
terms of sine and cosine integrals. The usual procedure in obtaining these re-
lations is not from (37), but to start from the integrated form (A-33) of Appendix
A and integrate this over the current distribution.

It was mentioned in the Introduction that in fonosphere probing we are in-
terested in the change in impedance of the dipole on entry into the ioﬁosphere.
Consequently we may form the difference between the expressions given in (30)
and (37), and calculate the differential impedance itself numerically. For this
purpose (37) is first integrated with respect to q3 in the same manner as {25),
after first transforming q,,q, to the p,\‘l varisbles. This gives for Z, the
same form as given in (30), but with the quantities N and D replaced by G(g)
as given in (41) and

D= -, (42)
respectively.

16
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Appendix A

Calculation of the Greem's Tensor
We calculate the Gyj(x|x,) of (7) from Mexwell's equations. To do this,
we eliminate J§ from the two coupled first-order differential equations to obtain
a second-order differential equation for E. The inverse of this second-order
differential equation then leads to the Greem's tensor.
The firsti-order equatioms are
curl E = ~iwpoH, (a-1)

curl H = J + iwe,K-E (A-2)

5
where K is the dielectric tensor {"ij} eand J is the source current density,
Eliminating H, we obtain

curl cwrl E= ~lop.curllf = -Lwped+ L F.E,
or, using curl curl = grad div -VZ2,

grad div E - V-7 = ~iwm ], (a-3)
where k, = w/c = free-space wave nunber. V3E is understood to represent the
Laplacian operating on E only ir rectangular coordinates, In these coordinates,

(A-=3), written in component form, is

(30; = V* &1 —ky i) B (x) = ~depo Tjx) (a-4)
where
2 W= fl it ix=y
%= 3x; 2 5»'{0 if i¥]

Since (A-3) is linear in E and J, we must be able to write E and J as linear
functionals of each other. (A-4) gives J as a linear functional of J, but what
we need is E as a linear functional of J. Since {A~4) involves differential
operations on E, it follows that E must be an integral operator on J. Thus we
must be able to write

k) = f6g; (320 T30 dix, (a-5)
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Inserting (A~5) into (A-4), we obtain
Jwoe;- V3bi; ~ ko i) G (slge) T (o) d¥ = ~Lwpo T (%) (4~6)
We can write (A-6) in a more transparent mamner by using the properties of the

Dirac delta function b(l{—;&)- These properties are summarized by

J8tx-x) §x) 2 = £00.

) = [80x=x) Fxd d*, = 8, 606~ %) J (X)d>%,.
With this, (A-6) becomes
f (395 = V75 k,n:q) e (312) T (20 dx) -}.w;tofx;, 5020 (e d¥x, . (A-7)
From this it is apparent that ij(;cj;:'i) is given by
(29~ v6ij ~IG ki) Gjpp(Kix1) = =i opto B 6(x-X1)- (4-8)
(A-8) still requires the inversion of a differential operator in order to obtain
G. A common technique to use in cases of this kind is to Fourier anslyze G. This
accomplishes the same end as the use of operational calculus, since differentiation
leads to multiplication, whose inverse, divislion, is lkmown, To this end we set
G () = ~iopo SO [ 4%, s (k) €578 €At (4-9)
and
B4~ = oy J k€ eekles | (4-10)
(A-10) follows from the completeness and orthonormality of (2::)"3/ Re=ilyS, On
insertion of (4A-9) and (A-10) into (A-8) we obtain

-LwF'OSA3‘(( -k; k‘ fk‘lsq k.ltq) e L~.§ Jd’k' 9Jk(b,k')e.‘,k.o£,

-2 s, Joke kR ol E,

Since the functional dependence on x; must be the same on both sides of this

(A-11)

equation, it follows that we can write
jd’k, glk(ﬁ,ka) -hk. o =L othex

(2= €~ fjk(k), (A-12)
where fjk(k) is some as yet unspecified function of k. Then it is evident from
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o o a (4-23)
where, with u = 1 -~ 1ig,
Xy
LI Rl v (A-24a)
“ s ik (a-24b)
ay= |~ (A~24¢)

X,¥s2% are the usual normalized (plasma frequency)2, gyro frequancy, and collision

frequency, respectively:

X = ()",
y = W/, (a-25)
2= 3w . (A-25)
Then
Alq) = det(M(9) = ot3(47 - 77°) (4 - '), (a-26)
where ¢,2 and ¢,? are the roots of the bi-quadratic
ayo - [2xs - (it PPl o 4 (P ) (i PP- - o2} = O, (A-27)
with
p*= 4 +da, (A-28)
These roots thus are given by
Gt = -2%;-{ 2oty =ittt & (f(ots-oti} p* +4azal} pt - Fogety } (2-29)
Inserting (A-26) into (A-19), we obtein finally
) =-S5 S ds“!?-f:?'e)(q;-i‘) ' (4-30)
Reduction to Free-Space Green's Tensor

In the case of fiee space, o =cy=!, 2.0, 80 that (A~29) reduces to

Hence
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f

comparison of the two sides of (A-11) that

(¢ 85 - K xi; - kik;) fi (K) = Bipe

(a-13)

(A-8) 1s a system of rlgebraic equations in § .i!z(k)‘ These can be inverted

by Kramer's rule, or by ordinsry matrix inversion. Thus if we define

Mi; = K& -kikg — o ki
then
.
My = =&

where 834 1s the (J,1)™ cofactor of M and A = det.M. Hence from (A-13)

. Ak
"' il ‘——L
$i0(k) ;

Then from (A-9), (A-12), (A-16), we obtain
deopto (1, A Qi) R

Gg(&&):‘ R4 A(K)
We now Introduce the dimensionless varisbles
k/k = 9 }
kalz-x0)= 2.

Then (A-17) becomes
. ____A:w eka £33, DjiC -—4.&
& (xl ) = - Tk Ja% Q%‘ o
Suhgtitution of (A-19) into (4-5) gives, finally
. - A (g) ' -&' oe
Eut =~ S Jern g 175 <
From (A-14), the matrix M in the dimensionless coordinates q is
qz_ q,‘-uc., =qiGa= Kia ~qids ~ Ki»
M(i) = it L Tl o g2=q; =% ~4ads~ %13
\"‘k‘!:" €y ~Guda-Ga q°-4di-%
vhere
q* = 4+ do ¢ 43,
In the coordinate system 3, i tekes on the particularly simple form
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(A~15)

(A-16)

(a4-17)

(a-18)

(4-19)

(A-20)

(A-21)

(A-22)



Since for free space Kk =1, x;30, we obtain from (a-21)
Aji = 4;4i(4*-1), L#) (a-31)
= (¢~ D (q*~1), (4-32)
while from (A-26)
A= (g3-1+pY)" = (q*-1).
By writing
qdid; = qid; =&
(A-31) and (A-32) may be written in the single form
= (4;4: -8t} (q*=1).
Hence (A-30) becomes

GU (ﬁ’ﬁa) == ‘(‘;:')',k' fdsq 114:; 8¢ e""i'ﬁ .

. __i 2
» We may replace gjqi by ,-3?; s and obtain

Noting that q,=

d  _ s
ey~ g,
Gij ) = —%-(2 s (a& 5t 5;) {4 qﬁ—q-
The permutation of the indices is allowable because of the isotropy of q-z.
We evaluate the g-integral by transforming to polar coordinates:
d’ = q*dqd@sinb 46
e.""i'«c = e.,}_qe.—.ose

so that
g S5 = -(qf“i' [ag[sine 20445
40
= Z‘I’A. qqd.q[ (eva.q? eu") = 2""‘[ q:‘-( dq'

The last integral has poles at ¢ = * 1. We detour around these in the usual
manner as shown in Fig. 3, which is equivalent to assuming that q has a small
negative imaginary part. Then, by deforming the path of integration into an
infinite semicircle in the lower half-plane, we obtain -2xi.(residue at

q = 1), which is

Zﬂ&

Lp
= e
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4~ plane

Pig. 3

Thus we obtain for Gﬁ

iwpeke/ B* e-il’
> >+ 8;;

(21? ) aﬁ aej ‘J) e

which, on putting p= k,r , becomes

G g =

w4 ket
G;lx|x)= "4: 06;5 o 5'13) F (8-33)

which is the form of the Green's tersor for free-space.
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